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Abstract
Statistically Secure Sigma Protocols with Abort

by Anders Fog BUNZEL

An efficient way that one part, called the prover, can identify himself to-
wards another part, called the verifier, is with a sigma protocol that satisfies
completeness, special soundness and special honest verifer zero-knowledge
(sHVZK). However, depending on the problem that the security is based on
it may be insecure for the prover to use a sigma protocol since he may not
be able to hide his secret for a malicious verifier. One such example is if
the security is based on a lattice problem like the shortest vector problem.
The literature has proposed an identification scheme that use a technique
called abort, which deals with this problem. But an identification scheme is
weaker than a sigma protocol since a sigma protocol can be used as a signa-
ture scheme, a zero-knowledge protocol, a commitment scheme or even an
identification scheme. In this thesis, we present a statistically secure sigma
protocol with abort that satisfies statistical completeness, statistical special
soundness and computational sHVZK. We find that the statistically secure
sigma protocol with abort is a nice-to-have protocol, since the security of
traditionally sigma protocols are either based on the prime factorization
problem or the discrete logarithm problem. And if these problems some-
day are proven to be easy, it’s important to have other kind of problems like
lattice problems that we can base the security on.
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Chapter 1

Introduction

This thesis is a continuous work of [12], and hence small parts of this thesis
has previously been published.

A sigma protocol as defined in [9] is an interactive protocol between two
parties where one party, called the prover, tries to convince another party,
called the verifier, that he know some piece of information, which enable
him to prove that a certain statement is true. One such example is that he
tries to convince the verifier about that he know the value of a secret key
corresponding to a given public key. To be more precise, then the prover
claims to know the value of the witnessw to the problem x in the relationR,
which is also denoted as (w, x) ∈ R. The problem x is based on the hardness
of some computational problem defined in the group G and consists of the
description of an additive homomorphic function f and the element y =
f(w).

In the first step of a sigma protocol chooses the prover, say P, some
randomness r from the order of the group G and sends a = f(r) to the
verifier, say V. V then sends a t-bit challenge e to P, who use the witness
w, the randomness r and the challenge e to compute the response z, e.g.
z = r + e · w mod |G| where |G| is the order of G, which he sends to V.
Finally, V verifies that (a, e, z) is an accepting conversation for the problem
x: if it’s he outputs accept and otherwise he outputs reject.

A sigma protocol satisfies completeness, special soundness and special
honest verifier zero-knowledge. The completeness property ensures that
if P is honest and they both follows the protocol P can always convince
V to output accept. Similar, the special soundness property ensures that
if P is malicious, i.e. he don’t know the value of a correct witness to the
problem x, he is only able of convincing V to output accept with probability
negligible in the length of the challenge e. Finally, the special honest verifier
zero-knowledge property ensures that the only information V learns after
having seen all messages sent during the protocol is that P know the value
of a correct witness to the problem x in the relation R and nothing else.

The reason why P has to choose the randomness r is to hide the value of
the witness w in the response z. If G is some finite group P would just
choose r uniformly at random from the order of G, but if the order of G is
unknown this is an infeasible solution. One example is Girault’s protocol
[1, 3] where G = Zn with n = p · q for the primes p and q, which both are
unknown to P and V. And hence, they don’t know the order of G, which is
Z∗n = {x ∈ Zn | gcd(x, φ(n)) = 1}, because they can’t compute Euler’s phi
function φ(n) = (p−1) ·(q−1). Instead, P can choosew and r from intervals
where the interval that r is chosen from is much larger compared to the one
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that w is chosen from. The value of w is now hidden in e.g. z = r+ b ·w due
to the fact that adding a small integer (the witness w) to a large integer (the
randomness r) doesn’t have much influence on the result, i.e. we can think
of the response z as z = r. Notice that the challenge is only a single bit b.

We also have to use the above approach if the group G is infinite, e.g.
G = Z. However, in some cases is this insecure. One such example is if
the security is based on a lattice problem like the shortest vector problem
as e.g. in Lyubashevsky’s protocol [7]. This protocol use the infinite group
G = Zn where n ≥ 1 is the vector length. Choosing r from a much larger
interval than w implies that a possible malicious verifier V∗ would be able
of computing a correct witness w∗ such that (w∗, x) ∈ R because he only
has to find a large preimage of y. A solution to this problem is for P to
choose r from an interval that is only a small factor larger than the one w
is chosen from and use a technique called abort: In the third step of the
protocol P only reveals the response z to V if it inside some interval I and
aborts otherwise. Now V∗ has a hard time because he has to find a small
preimage of y.

Our contribution. The contribution of this work is a statistically secure
sigma protocol with abort, i.e. a sigma protocol using the above described
abort technique that satisfies statistical completeness, statistical special sound-
ness and computational special honest verifier zero-knowledge.

1.1 Chapter Overview

Chapter 2. In the preliminary chapter we introduce the notations and defi-
nitions used in the rest of the thesis. The notations and definitions are based
on the work of [9, 11]. We start with a few mathematical definitions such as
lattice and the Chernoff-Hoeffding bound including the extended version
where the independence of the random variables are limited. Then we will
introduce some basic cryptography definitions, namely negligibility and in-
distinguishability. From thereof we define some more advanced definitions
such as encoding schemes, secret sharing, commitment schemes, interactive
proof systems, zero-knowledge protocols, sigma protocols and the random
oracle model.

Chapter 3. In this chapter we present a general framework for protocols
with abort and prove that it satisfies completeness with abort, statistical
special soundness and computational special honest verifier zero-knowledge.
The general framework is on a similar form as a sigma protocol, but where
the challenge that the verifier sends to the prover is only a single bit. How-
ever, we don’t specify what should happen if the prover chooses to abort
in the framework, and hence it’s only a building block from which we can
build e.g. a statistically secure sigma protocol. Finally we present a non-
aborting version of the general framework and compare it to the aborting
version. This comparison shows how important the aborting technique is
security-wise when we use lattice.

Chapter 4. In this chapter we first present two applications of the general
framework: Girault’s protocol [1, 3] and Lyubashevsky’s lattice-based pro-
tocol [7]. Then we present a statistically secure sigma protocol, which is
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build upon the general framework with abort and prove that it satisfies sta-
tistical completeness, statistical special soundness and computational spe-
cial honest verifier zero-knowledge. Finally we present a non-interactive
version of the statistically secure sigma protocol that is only secure in the
random oracle model. In contrast to the interactive version can the non-
interactive version achieve perfect completeness. However, this come at
the expense of the efficiency.

Chapter 5. In the final chapter we present our conclusion and discuss pos-
sible future work.
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Chapter 2

Preliminaries

2.1 Notations

Throughout this thesis we will use consistent notations based on [9, 11]. We
will use a square � to indicate the end of a proof, a diamond ♦ to indicate
the end of an example and a triangle4 to indicate the end of a remark. The
abbreviation "iff" is used for "if and only if" and x ∈R S means that x is
chosen uniformly at random from the set S.

We define a vector of length n ≥ 1 as ~v = (v1, v2, . . . , vn) ∈ Zn and a vector
of vectors as v̂ = (~v1, ~v2, . . . , ~vm) for some m ≥ 1. The infinity norm of ~v is
defined as ‖~v‖∞ = maxi |vi| for i = 1, 2, . . . , n and the infinity norm of v̂ as
‖v̂‖∞ = maxj ‖~vj‖∞ for j = 1, 2, . . . ,m.

2.2 The Chernoff-Hoeffding Bound

Let X and Y be two random variables. We say that X and Y are inde-
pendent if knowing the value of one of the variables gives no additional
information about the other variable. More formally, X and Y are indepen-
dent if and only if Pr[X = x |Y = y ] = Pr[X = x ] for all possible values
of x and y.

The Chernoff-Hoeffding bound says that the outcome of a random experi-
ment repeated many times independently is likely to be close to its expected
outcome.

DEFINITION 2.1. LetX1, . . . , Xn be independent random variables where
0 ≤ Xi ≤ 1 for all i. LetX =

∑n
i=1Xi and µ =

∑n
i=1 E[Xi ] where E[Xi ]

is the expected outcome of Xi. Then for any 0 < ε ≤ 1 is:

Pr[X ≤ (1− ε) · µ ] ≤ exp

(
−ε

2 · µ
2

)

Pr[X ≥ (1 + ε) · µ ] ≤ exp

(
−ε

2 · µ
3

)
where exp(x) = ex.

EXAMPLE 2.2. Consider n = 100 independently coin flips Xi using a fair
coin. Let Xi = 1 if coin i turns up head and Xi = 0 otherwise. Now,
X =

∑n
i=1Xi denotes the actually number of heads in the experiment

and µ(n) =
∑n

i=1 E[Xi ] = 100 · 1
2 = 50 the expected number of heads
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µ(n) = 50

(1 � ✏) · µ(n)

µ(n) � ✏ · µ(n) µ(n) + ✏ · µ(n)

(1 + ✏) · µ(n)

= =

= =

5545

n = 1001

FIGURE 2.1

in the experiment. Say, that we are e.g. interested in the probability that
the actually outcome X of the experiment deviates with less/more than
ε · µ(n) = 1

10 · 50 = 5 from the expected outcome µ(n) = 50. See FIGURE 2.1
for an illustration. Using the lower tail Chernoff-Hoeffding bound we have
that:

Pr[X ≤ (1− ε) · µ(n)]≤ exp

(
−ε

2 · µ(n)

2

)
= exp

(
−
(

1
10

)2 · n2
2

)
= exp

(
− n

400

)
and using the upper tail Chernoff-Hoeffding bound we have that:

Pr[X ≥ (1 + ε) · µ(n)]≤ exp

(
−ε

2 · µ(n)

3

)
= exp

(
−
(

1
10

)2 · n2
3

)
= exp

(
− n

600

)
In other words, the probability that the actually outcome X deviates with
less/more than ε · µ(n) = 5 from the expected outcome µ(n) = 50 is expo-
nential small in n. And hence, after repeating the experiment many times
is X close to µ(n) = 50.

♦

2.2.1 The Chernoff-Hoeffding Bound with Limited Independence

In some cases we can’t achieve fully independence among the random vari-
ables X1, . . . Xn, and hence we need a weaker result than the one given in
DEFINITION 2.1. Fortunately, [2] has proved that the Chernoff-Hoeffding
bound holds even if the variables are only k-wise independent. A set of
random variables X1, . . . , Xn are k-wise independent for k ≥ 1 if every
subset of size k is mutually independent, and hence X1, . . . , Xn are fully
independent if and only if it’s k-wise independent for all 1 ≤ k ≤ n.
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DEFINITION 2.3. Let X1, . . . Xn be k-wise independent random vari-
ables for k ≥ 1 where 0 ≤ Xi ≤ 1 for all i. Let X =

∑n
i=1Xi and

µ =
∑n

i=1 E[Xi ] where E [Xi ] is the expected outcome of Xi. For any
0 < ε ≤ 1, if k ≤

⌊
ε2 · µ · exp

(
−1

3

)⌋
then:

Pr[|X − µ| ≥ ε · µ ] ≤ exp

(
−
⌊
k

2

⌋)
and if k =

⌊
ε2 · µ · exp

(
−1

3

)⌋
then:

Pr[|X − µ| ≥ ε · µ ] ≤ exp

(
−
⌊
ε2 · µ

3

⌋)
where exp(x) = ex.

Remark. Notice that if the independence k is small enough depends the
probability only on k (and not ε and µ), and otherwise is it equal the up-
per tail Chernoff-Hoeffding bound.

4

2.3 Lattices

Let B = {~b1, . . . , ~bn} be an n-linearly independent basis. A lattice v̂ is de-
fined by the set of vectors:

v̂ =

{
n∑
i=1

xi · ~bi | xi ∈ Z

}
= {~v1, . . . , ~vm}

where m is the length of v̂ and B is called the basis of v̂.

For lattice-based constructions in cryptography to be any useful we need
to base the security on some hard lattice problem. One such problem is the
shortest vector problem (SVP) where we are given a lattice v̂ and asked to
find the shortest vector ~v in v̂. By shortest we mean the vector ~v ∈ v̂ that
has the smallest infinity norm ‖~v‖∞ in v̂. Sometime is the approximated
version of the shortest vector problem (SVPγ) used instead: Given a lattice
v̂ we are asked to find a vector ~v ∈ v̂ such that it’s at most γ times larger
than the shortest vector in v̂. Notice that SVP = SVP1. Furthermore, as
argued in [10] is SVPγ the central hard lattice problem because all other
lattice problems can be reduced to SVPγ . And hence, in this thesis we are
only interested in the hardness of solving the shortest vector problem.

Let L = Z[X]/ 〈xn + 1〉 be a ring of polynomials. We remember that an
ideal I of L is a subgroup of (L,+) where λ · x ∈ I for all λ ∈ L and
x ∈ I . An ideal lattice in L is a lattice v̂ with the extra property that for
every vector (v0, . . . , vn−2, vn−1) in v̂ is the rotated vector with the first co-
ordinate negated (−vn−1, v0, . . . , vn−2) also in v̂. Now, if we treat vectors as
polynomials, i.e. (v0, . . . , vn−2, vn−1) as v0 + · · ·+ vn−2 · xn−2 + vn−1 · xn−1,
corresponds ideal lattices to ideals in L because for all λ = v0 + · · ·+ vn−2 ·
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xn−2 + vn−1 · xn−1 ∈ L is:

λ · x= (v0 + · · ·+ vn−2 · xn−2 + vn−1 · xn−1) · x
= v0 · x+ · · ·+ vn−2 · xn−1 + vn−1 · xn
= v0 · x+ · · ·+ vn−2 · xn−1 + vn−1 · (−1)

=−vn−1 + v0 · x+ · · ·+ vn−2 · xn−1 ∈ I

where we used the fact that we compute modulo xn + 1 in L, which means
that xn + 1 = 0 and hence xn = −1.

Ideal lattices are useful because we can build efficient collision-resistant
hash functions based on the hardness of finding shortest vectors in such
lattices. The hash function is defined as follows where we use the ring L
from above: For any integer m and D ⊆ L, the family of hash functions
H(L,D,m) mapping Dm to L is defined as:

H(L,D,m) = {fĉ | ĉ ∈ Lm}

Now, for any d̂ ∈ Dm we have that:

fĉ(d̂) = ĉ · d̂ = ~c1 · ~d1 + · · ·+ ~cm · ~dm

A proof that the above hash function is collision-resistant given that the
shortest vector problem is hard is given in [5].

As argued in [7] allow lattice-based protocols much less algebraic structure
compared to number-theoretic protocols. E.g. the domain of a number-
theoretic hash function is the whole ring while the domain of a lattice-based
hash function is just a subset of the ring, which is neither closed under
addition nor multiplication. This is related to the fact that factoring and
discrete logarithm problems can be reduced to finding an element in the
domain of some additive homomorphic function (a preimage), while the
shortest vector problem can be reduced to finding a small element in the
domain of some additive homomorphic function (a small preimage).

2.4 Encoding Schemes

Assume two parties, say A and B, wish to communicate digitally. All they
have is an unreliable channel that may result in errors in the transmitted
messages. We say that the channel is noisy because it may flip or delete
bits sent across. The problem here is for A to send a message through the
channel in such a way that B can recover it even if some of the bits are
flipped or deleted. The solution is for A to use an encoding scheme, which
add redundancy to the message such that B can decode the result into A’s
original message. In fact, encoding schemes are not just used for digital
communications, but also in hard drives and physical media such as CD’s,
which may suffer from e.g. scratches.

Let Σ = Fq be an alphabet of size |Σ| = q, i.e. the alphabet is associated with
a finite field of size q. A linear code C = [n, k, d]q with block length n (or
codeword length), dimension k (or message length) and minimum distance
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d is a linear subspace of Σn. Remember that C ⊆ Σn is a linear subspace if
for every c, c′ ∈ C and α ∈ Σ where c = (c1, . . . , cn) and c′ = (c′1, . . . , c

′
n), it

holds that:

1. C is closed under vector addition, i.e. c+c′ = (c1 +c′1, . . . , cn+c′n) ∈ C.

2. C is closed under scalar multiplication, i.e. α·c = (α·c1, . . . , α·cn) ∈ C.

The Hamming distance between two codewords c, c′ ∈ C, denoted ∆(c, c′),
is the number of coordinates in which they differs:

∆(c, c′) =
∣∣{i|ci 6= c′i}

∣∣
and the minimum distance d of C is defined as the minimum Hamming
distance between all codewords in C:

d = min
c,c′∈C,c 6=c′

∆(c, c′)

EXAMPLE 2.4. One example of a linear code C = [n, k, d]q with minimum
distance d = n− k + 1 where n ≤ q is the Reed-Solomon code.

Let Pk ⊆ Fq[X] be the set of polynomials with degree at most k − 1, i.e.
for all f ∈ Pk is deg(f) ≤ k − 1. A message m = (m0, . . . ,mk−1) ∈ Fkq is
encoded into the codeword c ∈ Fnq as follows:

1. Convert the message m into the polynomial f(x) = m0 + m1 · x1 +
· · ·+mk−1 · xk−1 ∈ Pk.

2. Choose n distinct elements α1, . . . , αn ∈ Fq (this is why we require
that n ≤ q).

3. The encoding of m is defined as the codeword c = (f(α1), . . . , f(αn)).

♦

2.4.1 Secret Sharing using Encoding Schemes

A secret sharing scheme with t-privacy and r-reconstruction is used to share
a secret s between n parties where s is divided into n shares (s1, . . . , sn) and
share si is given to party Pi. The secret is shared such that any set of r par-
ties can reconstruct the secret and any set of t parties have no information
about the secret. If r = t+1 is the scheme called a t-threshold secret sharing
scheme. Furthermore, a secret sharing scheme is said to be linear, if for any
two secrets s and s′ with respective shares (s1, . . . , sn) and (s′1, . . . , s

′
n), it

holds that (s1 + s′1, . . . , sn + s′n) and (α · s1, . . . , α · sn) are correct shares of
the secrets s+ s′ and α · s respectively where α is some constant.

As proved in [6] can we build a linear secret sharing scheme from the code
C = [n + `, k, d]q over the alphabet Fq (i.e. a finite field of size q) with
(d⊥ − ` − 1)-privacy and (n + ` − d + 1)-reconstruction where 0 < ` < d⊥.
d⊥ is the minimum distance of the dual code C⊥ = [n+ `, (n+ `)− k, d⊥]q,
which is defined as:

C⊥ = {v| 〈v, c〉 = 0,∀c ∈ C}

where 〈v, c〉 = Σn+`
i=1 vi · ci is the inner product of v and c.
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To secret share s ∈ F`q we choose a codeword c = (c1, . . . , c`, , c`+1 . . . , c`+n) ∈
C uniformly at random from the qk possible codewords such that s = (c1, . . . , c`)
and where (c`+1, . . . , c`+n) ∈ Fnq are defined to be the shares of s.

2.5 Negligibility

Let A be an adversary whose computational power is bounded to run in
time polynomial to k where k is the security parameter of the protocol Π.
When defining security of Π against A we need a notion of the allowed
success rate of A for Π to be secure. Assume that the only attack against Π
is a brute-force attack. Since A is polynomial time bounded he can’t com-
plete a brute-force attack, but instead guess poly(k) number of random val-
ues where poly is some polynomial and hope that he guess the right one.
Therefore, the probability of A’s success ε(k) has to be strictly smaller than

1
poly(k) for any polynomial poly. We say that the probability ε(k) has to be
negligible in k for Π to be secure.

DEFINITION 2.5. The function ε(k) is negligible in k if and only if there
for any polynomial poly exists a k0 ∈ N such that ∀k > k0 : ε(k) <

1
poly(k) . This is also denoted as ε < negl(k).

EXAMPLE 2.6. An example of a negligible function is ε(k) = 2−k since it’s
exponential small in k.

♦

2.6 Indistinguishability

The statistical distance between two probability distributions P and Q is a
measure of how far apart they are from each other.

DEFINITION 2.7. Let P and Q be two probability distributions. Define
P (y) and Q(y) as the probability that P and Q respectively assigns y.
The statistical distance between P and Q is defined as:

SD(P,Q) =
∑
y

|P (y)−Q(y)|

EXAMPLE 2.8. Consider a coin toss with y ∈ {head, tail}. Assume that
P (head) = P (tail) = 1

2 , Q(head) = 1
3 and Q(tail) = 2

3 , i.e. P corresponds
to the probability distributions of a honest coin and Q of a biased coin. The
statistical distance between P and Q is:

SD(P,Q) =
∑
y

|P (y)−Q(y)|

= |P (head)−Q(head)|+ |P (tail)−Q(tail)|

=

∣∣∣∣12 − 1

3

∣∣∣∣+

∣∣∣∣12 − 2

3

∣∣∣∣ =
1

6
+

1

6
=

2

6

♦
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A useful concept in cryptography is called indistinguishability. Let U and
V be two probabilistic algorithms and D a probabilistic polynomial time
distinguisher. Assume that we run both U and V on the same input x and
then choose one of the output, which we denote by y. Furthermore, the
length of y should be polynomial in the length of x. Now, if we input x and
y to D, it tries to guess whether y is the output of U or V . And if D has a
hard time, we say that U and V are indistinguishable.

DEFINITION 2.9. LetU and V be two probabilistic algorithms whereUx
and Vx are probability distributions of U and V respectively on input
x. Furthermore, let D be a probabilistic polynomial time distinguisher.

1. U and V are perfectly indistinguishable, written U ∼p V , if and
only if SD(Ux, Vx) = 0.

2. U and V are statistically indistinguishable, written U ∼s V , if and
only if SD(Ux, Vx) is negligible in the length of x.

3. U and V are computationally indistinguishable, written U ∼c V ,
if and only if D(U) ∼s D(V ) for every D. D(U) is defined as the
algorithm that first runs U on input x to get the output y and then
runs D on input x and y. D(V ) is defined similar for V .

Remark. Perfectly indistinguishable means that no matter how much com-
puting power D has, it has no chance of distinguishing at all. For statis-
tically indistinguishable D may have a slightly advantage over a random
guess, but it remains negligible. Finally computationally indistinguishable
means that if D has a lot of computing power, it may be able to distinguish-
ing.

4
EXAMPLE 2.10. If we think of x as a public key for an encryption scheme, U
as the encryption of the messagem1 and V as the encryption of the message
m2, then indistinguishability of U and V means that an adversary has a
hard time guessing whether a ciphertext is an encryption of m1 or m2.

♦

2.7 Commitment Schemes

A commitment scheme is used in many modern cryptography protocols
and let one part, say P, commit to a value such that he can’t change it later
on and it’s only revealed to another party, say V, when he chooses.

DEFINITION 2.11. Let P and V be two parties and KGen a probabilistic
polynomial time key generator, which on input 1k with security param-
eter k outputs a public key pk. Furthermore, let commitpk : {0, 1}n ×
{0, 1}s → {0, 1}∗ be a commitment scheme for pk where n and s are
polynomial in k.

1. Setup: P or V runs KGen(1k), which outputs the public key pk,
and sends it to the other party who verifies it.
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2. Commitment: P commits to the value m ∈ {0, 1}n by first choos-
ing r ∈ {0, 1}s uniformly at random and then computing c =
commitpk(m, r), which he sends to V.

3. Opening: P opens the value of c by revealing m and r to V, who
verifies that c = commitpk(m, r).

The property that P can’t change the committed value after he has sent it
to V is called the binding property and that V doesn’t know the committed
value until P reveals it is called the hiding property. Hence, a commitment
scheme comes in two flavors:

1. Unconditional binding and computational hiding: P runs KGen(1k) to
generate the public key pk, which he sends to V who either accepts or
rejects it.

Unconditional binding: If pk is correctly generated, then for any c
exists there at most one value m such that for some r it holds
that c = commitpk(m, r). In other words, even if P has infinite
computing power he can’t change the committed value. Further-
more, V accepts only an incorrect generated pk with probability
negligible in k.

Computational hiding: For two commitments c = commitpk(m, r)
and c′ = commitpk(m

′, r′) where m 6= m′ and r 6= r′, we require
that (pk, c) and (pk, c′) are computational indistinguishable, i.e.
(pk, c) ∼c (pk, c′). Hence, V has a hard time guessing what is
inside a commitment.

2. Computational binding and unconditional hiding: V runs KGen(1k)
to generate the public key pk, which he sends to P who either accepts
or rejects it.

Computational binding: Let P∗ be a malicious prover who is polyno-
mial time bounded and tries to change the committed value. We
require that the probability that P∗ on input pk outputs a commit-
ment c and two valid openings (r,m) and (r′,m′) where m 6= m′

and r 6= r′, i.e. commitpk(m, r) = c = commitpk(m
′, r′), is negligi-

ble in k.

Unconditional hiding: The commitment c reveals almost no infor-
mation about the committed value m, i.e. for two commitments
c = commitpk(m, r) and c′ = commitpk(m

′, r′) where m 6= m′ and
r 6= r′, we require that (pk, c) ∼s (pk, c′). Furthermore, P ac-
cepts only an incorrect generated pk with probability negligible
in k. If the commitment scheme is perfect hiding we have that
(pk, c) ∼p (pk, c′) and P never accepts an incorrect generated pk.

Remark. It’s clear that an unconditional guarantee is better that a computa-
tional one, so why do a commitment scheme not come in an unconditional
binding and unconditional hiding flavor? Assume that commit is such a
commitment scheme. Furthermore, assume that P has computed the com-
mitment c = commitpk(m, r) to the value m by using the randomness r.
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Since commit satisfies unconditional hiding, there must exist an r′ 6= r such
that c = commitpk(m

′, r′) for m′ 6= m. If not, V could try to compute the
commitment of every pair of value and randomness and compare them to
c, and hereby find the committed value m. However, if P has infinite com-
puting power he could use the same technique and find the pair r′ 6= r and
m′ 6= m such that c = commitpk(m

′, r′), and hence break the unconditional
binding property.

4
EXAMPLE 2.12. The following is an example of a computational binding
and unconditional hiding bit commitment scheme.

1. Setup: V runs KGen on input 1k, which outputs the public key pk =
(n, q, y) where n is a k-bit RSA modulus, q is a prime such that q >
n and y = f(x) for x ∈R Z∗n. The function f is defined as f(a) =
aq mod n. Finally P verifies that gcd(y, n) = 1 (i.e. pk is correctly
generated).

2. Commitment: P commits to the bit b by computing c = commitpk(b, r) =
yb · f(r) mod n where r ∈R Z∗n, which he sends to V.

3. Opening: P opens the value of c by revealing b and r to V, who verifies
that c = commitpk(b, r).

♦

2.8 Interactive Proof Systems

Let P and V, called the prover and verifier respectively, be two interactive
Turing machines with a common communication tape that allows them to
send and receive messages from and to each other. Assume that P has infi-
nite computing power and V is polynomial time bounded. In an interactive
proof system (P,V) is P and V given x as common input string where P
claims that the statement x ∈ L is true for the binary language L. After
running (P,V) outputs V either accept or reject, which is also denoted as
(P,V)(x)→ accept/reject.

DEFINITION 2.13. Let (P,V) be an interactive proof system for the bi-
nary language L ⊂ {0, 1}∗ where P claims that the statement x ∈ L is
true. An interactive proof system satisfies the following two properties:

1. Completeness: If P and V follows the protocol on input x where
x ∈ L, then the probability that V outputs reject is negligible in
the length of x.

2. Soundness: For any malicious prover P∗, if P∗ and V follows the
protocol on input x where x /∈ L, then the probability that V out-
puts accept is negligible in the length of x.

Remark. A more realistic version of the above protocol is called an interac-
tive argument where both P and V are polynomial time bounded. In this
version has P some extra auxiliary input δ, which allows him to convince V
to output accept.

4
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2.8.1 Proof of Knowledge Systems

Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation. We say that (w, x) ∈ R if w
is a solution to x, which is an instance of some computational problem. In
other words, w is a witness for x.

EXAMPLE 2.14. The following is an example of a relation R that contains
the discrete logarithm problems and their solutions:

R = {(w, x) | x = (p, q, g, h), ord(g) = ord(h) = q, h = gw mod p}

where p and q are primes.
♦

A variant of an interactive proof system is called a proof of knowledge system
where the prover P now claims that he "know" some piece of information
w that enable him to prove that the statement x ∈ LR is true (such as a
secret key corresponding to a public key). LR is defined as the language of
problems x for which there exists witnesses w such that (w, x) ∈ R for the
relation R:

LR = {x | ∃w, (w, x) ∈ R}
Therefore, after running P and V on common input x ∈ LR where P is
also given w as private input, which he claims to know the value of such
that (w, x) ∈ R, V outputs either accept or reject. This is also denoted as
(P(w),V)(x)→ accept/reject.

Since it’s difficult to define that a machine "know" some piece of infor-
mation, we say that it know some piece of information if it can be used to
compute the relevant information efficiently. Hence, we let a knowledge
extractor Ext, which is only given public information, interact with P and if
Ext can extract a correct witness from P to the problem x in the relation R,
then P must know the value of w such that (w, x) ∈ R.

DEFINITION 2.15. The protocol (P,V) is a proof of knowledge for the
relation R with knowledge error κ(x) ∈ [0; 1] if it satisfies the following
two properties:

1. Knowledge completeness: If P and V follows the protocol on in-
put x and private input w to P where (w, x) ∈ R, then V always
accept.

2. Knowledge soundness: Let Ext be a probabilistic knowledge ex-
tractor, which gets input x and rewindable black-box access to P∗.
Furthermore, let p(x) be the probability that any P∗ convinces V
to output accept. We require that the following holds: For any
P∗ there exists a polynomial poly such that whenever p(x) > κ(x)
then Ext outputs a correct witness to x in expected time at most

1
poly(p(x)−κ(x)) .

Remark 1. We can think of the knowledge error κ(x) as the probability that
a malicious prover P∗ can convince V to output accept without knowing a
correct witness to x.

4
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Remark 2. The running time of Ext is related to the probability that P∗ con-
vinces V to output accept because the better P∗ is to convince V, the more
likely it’s that P∗ know the value of a correct witness. Therefore, the prob-
ability that Ext extracts a correct witness is at least poly(p(x)− κ(x)), and
hence the expected running time of Ext is at most 1

poly(p(x)−κ(x)) .
4

2.9 Zero-Knowledge Protocols

Define P as the set of problems whose solutions can be found in polyno-
mial time and NP as the set of problems whose solutions can be verified in
polynomial time. One of the big question in computer science is whether
P = NP or not, i.e. if the solution to a problem can be verified in polyno-
mial time, can it be found in polynomial time? Problems that are at least as
hard as the hardest problem in NP are said to be NP-hard problems, i.e. if
H is a NP-hard problem then every problem L in NP can be reduced to H
in polynomial time. Furthermore, if H is also a NP problem (i.e. solutions
to H can be verified in polynomial time), we say that H is a NP-complete
problem.

EXAMPLE 2.16. An example of a NP problem is the set of RSA prime factors.
Given a prime factor n = p · q where p and q are primes, it’s hard to find p
and q, but given p and q it’s easy to compute n (i.e. it’s easy to verify the
solution).

♦

Another useful technique in cryptography is called the simulator paradigm:
Let X and Y be two pieces of information. We want to argue that some
party in a protocol doesn’t learn anything else than X after seeing Y . The
simulator paradigm says that if Y can efficiently be computed fromX , then
a party learns no more than X after seeing Y .

EXAMPLE 2.17. If we think of an interactive proof system (P,V) with P as
the prover and V as the verifier, X could correspond to the fact that P’s
claim is true and Y to all the messages sent during the protocol between
P and V. Therefore, if we efficiently can simulate the protocol without in-
teracting with P (i.e. efficiently compute Y from X), V learns only that P’s
claim is true and nothing else.

♦

Using the concept illustrated in EXAMPLE 2.17 can we now define the no-
tion of a zero-knowledge protocol: A zero-knowledge protocol is an interac-
tive proof system or an interactive argument with an extra zero-knowledge
property, which says that even a malicious verifier V∗ learns nothing else
except that x ∈ L (i.e. V∗ learns only one bit of information).

DEFINITION 2.18. Let (P,V) be an interactive proof system or inter-
active argument for the language L with P as the prover and V as
the verifier. (P,V) is computational zero-knowledge if for any prob-
abilistic polynomial time bounded malicious verifier V∗, there exists a
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simulator SimV∗ , which runs in expected polynomial time, such that
SimV∗(x) ∼c (P,V∗(δ))(x) where P claims that x ∈ L and δ is some
auxiliary input to V∗.

Remark 1. We can for some protocols (P,V) achieve perfect zero-knowledge
if SimV∗(x) ∼p (P,V∗(δ))(x) or statistical zero-knowledge if SimV∗(x) ∼s
(P,V∗(δ))(x). We have that perfect zero-knowledge implies statistical zero-
knowledge, which again implies computational zero-knowledge.

4
Remark 2. The auxiliary input δ, which is only given to the malicious verifier
V∗, corresponds to previous information that V∗ has gained from earlier
executions of the protocol. V∗ may use δ to trick the prover P into revealing
more information.

4
Remark 3. The reason why a prover with infinite computing power can’t
cheat the verifier, but the simulator with no special knowledge can, is be-
cause the simulator is allowed to generate the messages in the protocol in
an arbitrary order while the prover is forced by the verifier to follow the
protocol in the correct order.

4

A variant of the simulator is called a perfect honest-verifier simulator, which
is denoted by SimV. A simulator is a perfect honest-verifier simulator if it
holds that SimV(x) ∼p (P,V)(x) and it’s polynomial time bounded, i.e. in
polynomial time can it simulate the protocol between a honest prover and
a honest verifier.

LEMMA 2.19 (The Rewinding Lemma). Let (P,V) be an interactive proof
system or interactive argument for the language L with P as the prover and V
as the verifier. Furthermore, let SimV be a perfect honest-verifier simulator for
(P,V), i.e. SimV(x) ∼p (P,V)(x). Assume that the conversation between P
and V has the form of (a, b, z) where P first sends a, V responds with a random
bit b and P replies with z. (P,V) is then a perfect zero-knowledge protocol.

Remark. If the simulator SimV is a statistical or computational honest-verifier
simulator for (P,V), i.e. SimV(x) ∼s (P,V)(x) or SimV(x) ∼c (P,V)(x), then
is (P,V) a statistical or computational zero-knowledge protocol.

4

It has been proved that we can build a zero-knowledge protocol from the
NP-complete Circuit Satisfiability (Circuit SAT) problem1, which implies
that any NP problem can be turned into a zero-knowledge protocol: Given
a problem instance x ∈ L where L ∈ NP we first construct from x a Boolean
circuit, which is only satisfiable when x ∈ L, and then use the zero-knowledge
protocol for Circuit SAT. The zero-knowledge protocol for Circuit SAT is
however inefficient, because we need at least 10,000 or 100,000 binary gates
for interesting problems as argued in [11]. Fortunately, we can for some
NP problems construct ad-hoc protocols such as the one in EXAMPLE 2.20,

1The Circuit SAT problem is the decision problem of determining whether a given
Boolean circuit has an assigment of its inputs that makes the output true.
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which is based on the graph isomorphism problem. But in e.g. identifica-
tion scenarios where the verifier is allowed to learn some information, just
not enough such that he can impersonate the prover, we can build very ef-
ficient protocols called sigma protocols, which satisfies a weaker property
called special honest-verifier zero-knowledge.

EXAMPLE 2.20. The following protocol is an example of an ad-hoc per-
fect zero-knowledge protocol for the NP graph isomorphism problem. The
prover P and verifier V are given two graphsG0 andG1 as input where both
has n nodes. P then claims that G0 and G1 are isomorphic, i.e. there exists
a permutation π such that π(G0) = G1. The protocol repeats the following
steps n times:

1. P chooses a permutation φ on n points uniformly at random and
sends H = φ(G0) to V.

2. V chooses a challenge bit b uniformly at random and sends b to P.

3. If b = 0 sends P the permutation ψ = φ−1 to V, otherwise sends he
ψ = π · φ−1 to V. Finally V outputs accept if and only if ψ(H) = Gb.

As argued is the protocol perfect zero-knowledge, and hence there ex-
ists a perfect honest-verifier simulator SimV such that SimV(x) ∼p (P,V)(x).
SimV repeats the following steps n times:

1. SimV chooses a bit c and permutation ψ uniformly at random and
sends H = ψ−1(Gc) to V.

2. SimV receives the challenge bit b from V. If b = c outputs SimV the
conversation (H, b, ψ) (i.e. the simulator has completed one iteration),
otherwise resets SimV the verifier and goes back to step (1).

♦

2.10 Sigma Protocols

Let P, the prover, and V, the verifier, be polynomial time bounded and R
some binary relation. A sigma protocol (or Σ-protocol) (P,V) for the rela-
tion R is a 3-step protocol where both P and V are given x ∈ LR as common
input and P is givenw as private input. P then tries to convince V about that
he know the value of the witness w to the problem x in the relation R, i.e.
(w, x) ∈ R, without revealing enough information that makes V able of ex-
ecuting the protocol as the prover. After running the protocol V outputs ei-
ther accept or reject, which is also denoted as (P(w),V)(x)→ accept/reject.

DEFINITION 2.21. A sigma protocol (P,V) for the relation R is a 3-
step protocol of the form (a, e, z) where P first sends a, V responds
with a random t-bit challenge e and P replies with z. Furthermore,
the following three properties should hold:

1. Completeness: If P and V follows the protocol on input x and
private input w to P where (w, x) ∈ R, then V always accept.
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2. Special soundness: Given two accepting conversations (a, e, z)
and (a, e′, z′) for the same x where e 6= e′, there exists a proba-
bilistic polynomial time knowledge extractor Ext, which on input
(x, a, e, e′, z, z′) can extract a correct witness w∗ from P such that
(w∗, x) ∈ R.

3. Special honest-verifier zero-knowledge (sHVZK): There exists a
probabilistic polynomial time simulator Sim, which on input x
and a random challenge e outputs an accepting conversation (a, e, z)
with exactly the same probability distribution as a conversation
between a honest P and V on input x. This is also denoted as
Sim(x, e) ∼p (P(w),V)(x).

Remark 1. The special soundness property implies that (P,V) is an inter-
active proof system for the language LR with soundness error σ(x) = 2−t

where t is the length of the challenge e. Therefore, a malicious P∗, who
doesn’t know the value of a correct witness, can convince V to output ac-
cept with probability at most 2−t. Furthermore, (P,V) is also a proof of
knowledge with knowledge error κ(x) = 2−t.

4
Remark 2. One of the reason why a sigma protocol is such an impoartant
protocol, is because it can be used as an identification scheme, a signature
scheme, a zero-knowledge protocol or a commitment scheme. See [9] for
a description of how the different protocols can be construed using only a
sigma protocol and their proof of security.

4
Remark 3. We will later on in the thesis refer to all three properties in DEF-
INITION 2.21 as perfect completeness, perfect special soundness and per-
fect special honest verifier zero-knowledge to distinguish them from some
slightly different properties defined in DEFINITION 2.23. The properties
in DEFINITION 2.23 will later on be referred to as statistical completeness,
statistical special soundness and computational special honest verifier zero-
knowledge.

4

EXAMPLE 2.22. One example of a sigma protocol is Schnorrs sigma protocol
for the following relationRwith the primes p and q, which is also described
in EXAMPLE 2.14:

R = {(w, x) | x = (p, q, g, h), ord(g) = ord(h) = q, h = gw mod p}

In Schnorrs sigma protocol tries the prover P to convince the verifier V
about that he knows the value of the discrete logarithm w to h:

1. P chooses r uniformly at random in Zq and sends a = gr mod p to V.

2. V chooses a t-bit challenge e uniformly at random where 2t ≤ q and
sends e to P.

3. P sends z = r + e · w mod q to V, who outputs accept if and only if
gz ≡ a · he (modp), p and q are primes and ord(g) = ord(h) = q.

♦
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2.10.1 Statistically Secure Sigma Protocols

The protocol we present in Section 4.2 can’t meet the three properties for
a sigma protocol as defined in DEFINITION 2.21. Instead we define a new
type of protocol that we call a statistically secure sigma protocol, which satis-
fies some slightly weaker properties called statistical completeness, statisti-
cal special soundness and computational special honest verifier zero-knowledge.

DEFINITION 2.23. A statistically secure sigma protocol (P,V) for the
relation R is a 3-step protocol of the form (a, e, z) where the following
three properties should hold:

1. Statistical completeness: If P and V follows the protocol on input
x and private input w to P where (w, x) ∈ R, then the probability
that V outputs reject is negligible in the length of the challenge e.

2. Statistical special soundness: Let (a, e, z) and (a′, e′, z′) be two ac-
cepting conversations for the same x where e 6= e′. Furthermore,
let Ext be a probabilistic polynomial time knowledge extractor.
The probability that Ext on input (x, a, a′, e, e′, z, z′) can’t extract a
correct witness from the prover is negligible in the length of x.

3. Computational special honest-verifier zero-knowledge: There ex-
ists a probabilistic polynomial time simulator Sim such that
Sim(x, e) ∼c (P(w),V)(x).

2.10.2 sHVZK vs. HVZK

In the literature some authors require that a sigma protocol satisfies honest-
verifier zero-knowledge (HVZK) instead of special honest-verifier zero-knowledge
(sHVZK). The difference is that the HVZK simulator is allowed to choose
the challenge while the sHVZK simulator is given the challenge as input.
As argued in [8] is sHVZK a stronger property than HVZK because sHVZK
implies HVZK while the opposite is not generally true. However, from a
sigma protocol that satisfies HVZK can we construct a slightly less efficient
sigma protocol that satisfies sHVZK.

Using the following construction can we build a HVZK simulator SimHVZK

from a sHVZK simulator SimsHVZK where SimHVZK is only given x as input:

1. SimHVZK chooses a t-bit challenge e uniformly at random.

2. SimHVZK runs SimsHVZK(x, e), which outputs an accepting conversa-
tion (a, e, z) for x with exactly the same probability distribution as a
conversation in the real protocol between a honest prover P and veri-
fier V.

3. SimHVZK outputs the conversation (a, e, z) for x.

On the other hand, if we tries to build a sHVZK simulator SimsHVZK

from a HVZK simulator SimHVZK would we end up with a simulator whose
expected running time is exponential in the length of the challenge. This is
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because SimsHVZK(x, e′) would run SimHVZK(x) until it outputs a conversa-
tion (a, e, z) with e = e′. Because the length of the challenge is t-bit, we have
that the probability that e = e′ is p = 1

2t , and hence the expected running
time is 1

p = 2t, which is exponential large in t. Hence, we can’t build a poly-
nomial time sHVZK simulator from a HVZK simulator. However, given a
sigma protocol (P,V) for the relation (w, x) ∈ R that satisfies HVZK can we
build a slightly less efficient sigma protocol (P′,V′) for the same relation R
that satisfies sHVZK by XORing the challenge with a random t-bit string:
P first computes a using some randomness r, chooses a t-bit string e′ uni-
formly at random and sends (a, e′) to V. V then chooses a t-bit challenge e
uniformly at random and sends (e⊕ e′) to P. P then use the witness w, the
randomness r and the challenge (e ⊕ e′) to compute the response z, which
he sends to V, who verifies that (a, (e ⊕ e′), z) is an accepting conversation
for x. A proof that (P′,V′) is a sigma protocol satisfing sHVZK is given in
[8].

2.11 The Random Oracle Model

Let (P,V) be a sigma protocol for the relation R with P as the prover and V
as the verifier. One way to improve (P,V) is to let P use a random oracleO,
which implements a truly random function, to compute the t-bit challenge
e. Hence, P first computes a using some randomness r and then use O on
input a to get the challenge e. He then use his witness, the randomness r
and the challenge e to compute the response z. Finally he sends (a, z) to
V, who first use O on input a to get the challenge e and then verifies the
response. This new protocol is called a non-interactive sigma protocol and
the transformation from the interactive version to the non-interactive ver-
sion is often refereed to as the Fiat-Shamir transformation or the Fiat-Shamir
heuristic. However, the non-interactive version is only secure in the random
oracle model because in the real world there don’t exists functions imple-
menting truly random functions.

You may have notice that a malicious prover now has more power be-
cause he can ask the oracle a polynomial number of times (since he is poly-
nomial time bounded) until he receives a challenge he may be able of an-
swering. But if the number of challenges are exponential large this is not a
feasible strategy. Furthermore, since the provers access to the random ora-
cle O removes any influence from a malicious verifier, which is equivalent
to forcing the verifier to be honest, we have that a non-interactive sigma
protocol is perfect zero-knowledge in the random oracle model.

DEFINITION 2.24. A random oracleO implements a truly random func-
tion and works as follows:

1. On input x, whichO has not seen before, it returns a truly random
t-bit string y and stores (x, y) in a table for further reference.

2. On input x, whichO has seen before, it finds (x, y) in its table and
returns y.
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Proving the special soundness property for a non-interactive sigma proto-
col in the random oracle model is different from proving it for an interac-
tive sigma protocol in the standard model because the prover P receives the
challenge from an oracle and not the verifier. Hence, P would not be able of
producing two accepting conversations (a, e, z) and (a, e′, z′) with different
challenges e 6= e′ because the first message a in both conversations have to
be the same and the oracle would therefore always return the same chal-
lenge. Fortunately, then [4] has presented a useful lemma called the Forking
Lemma.

The Forking Lemma basically says that, if a possible malicious prover
P∗ can produce within some time bound an accepting conversation with
high probability, then there exists a polynomial time bounded machineM
which can produce two accepting conversations with different challenges
by using an oracle replay attack on P∗. In an oracle replay attack runs M
the possible malicious prover P∗ a polynomial number of times using a
different oracle in each run (i.e. a different truly random function). And if
M is able of producing two accepting conversations, then we can use the
same technique as in the standard model to extract a correct witness from
P∗ in polynomial time.
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Chapter 3

A General Framework for
Protocols with Abort

3.1 The General Framework with Abort

In this section we present a general framework with abort for protocols
with abort. We have two parties in the framework, a prover P and a verifier
V, who both are polynomial time bounded. In the framework claims P
that he know the value of the witness ~w to the problem x in the relation
R, i.e. (~w, x) ∈ R. P sends first a commitment to V, who responds with a
challenge. P then computes a reply and if this reply is outside some interval
he chooses to abort the framework. Since we don’t define what should
happen when P chooses to abort, the framework should not be used as
a standalone protocol in its current form. We can therefore think of the
framework as a building block from which we can construct a statistically
secure sigma protocol (as we have done in Section 4.2).

The setup of the framework is as follows: Let f : Zn → (G, ◦) be a function
mapping vectors from Zn of length n ≥ 1 to group elements in G. Fur-
thermore, the function has to be additive homomorphic, i.e. f(~c + ~d) =

f(~c) ◦ f(~d) for all ~c, ~d ∈ Zn. The relation (~w, x) ∈ R is defined as ~w ∈ Zn
such that ‖~w‖∞ ≤ B for the bound B ≥ 1 and x = (f, y) where y = f(~w).
The prover P and verifier V are both given the problem x as common input
and P is given the witness ~w as private input such that (~w, x) ∈ R for the
relation R. Furthermore, let commit be a commitment scheme with public
key pk, which is either unconditional binding and computational hiding or
computational binding and perfect hiding (see Section 2.7 for the definition
of the two flavors). If commit is an unconditional binding and computa-
tional hiding commitment scheme can we achieve perfect special soundness
and computational special honest-verifier zero-knowledge. Otherwise, if it’s
a computational binding and perfect hiding commitment scheme can we
achieve statistical special soundness and perfect special honest-verifier zero-
knowledge. See TABLE 3.1 for a comparison of the framework using the
two different flavors of the commitment scheme and DEFINITION 2.21 and
DEFINITION 2.23 for the difference between the properties.

The commitment scheme is used to hide the value of the first message
in the framework if P chooses to abort, which he do if the response to the
challenge is outside of the interval I = [−(S · B − B);S · B − B]. The
reason why this is important is shown in the proof of THEOREM 3.1 and
by comparing this proof with the proof of THEOREM 3.2 is it shown why
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TABLE 3.1: Comparison of the special soundness and spe-
cial honest-verifier zero-knowledge (sHVZK) properties for
the general framework with abort using the two different
flavors of the commitment scheme. Let commitub,ch be an
unconditional binding and computational hiding commit-
ment scheme and commitcb,ph a computational binding and

perfect hiding commitment scheme.

commitub,ch commitcb,ph

Special soundness Perfect Statistical

sHVZK Computational Perfect

the interval I is important when we try to achieve perfect special honest-
verifier zero-knowledge. The general framework with abort is defined as
follows:

PROTOCOL 3.1: The general framework with abort

1. The prover P chooses ~r uniformly at random from Zn such that
‖~r‖∞ ≤ S · B for S ≥ 1, computes a = f(~r) and sends the
commitment com = commitpk(a, s) to the verifier V. s ∈R Z is
the randomness used in the commitment scheme and S defines
how large an interval ~r is chosen from compared to ~w.

2. V chooses a challenge bit b uniformly at random and sends b to
P.

3. P computes ~z = ~r + b · ~w. If ~z ∈ In for the interval I = [−(S ·
B − B);S · B − B] he sends Z = (~z, a, s) to V (i.e. he sends
the response and opens the commitment), otherwise he sends
Z = ⊥ to V (i.e. he aborts the protocol). Finally, if Z 6= ⊥ then
V verifies the response by checking that com = commitpk(a, s)
and f(~z) = a ◦ yb, i.e. (com, b,Z) is an accepting conversation
for x.

Illustration of the protocol
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PROTOCOL 3.1: The general framework with abort (continued)

Prover P (~w, x) Verifier V (x)

~r ∈R Zn

a = f(~r)

s ∈R Z
com = commitpk(a, s)

com

b ∈R {0, 1}

~z = ~r + b · ~w
if ~z ∈ In then
Z = (~z, a, s)

else Z = ⊥
Z

if Z 6= ⊥:
accept iff
com = commitpk(a, s)

and f(~z) = a ◦ yb

THEOREM 3.1. Let commitub,ch be an unconditional binding and computa-
tional hiding commitment scheme and commitcb,ph a computational binding
and perfect hiding commitment scheme.

The general framework with abort presented in this section satisfies com-
pleteness, but where the prover P chooses to abort with probability Pr[~z /∈ In ]
(see Equation (3.1)), special soundness (perfect if commitub,ch is used and sta-
tistical if commitcb,ph is used) where the extracted witness has size ‖~w ∗‖∞ ≤
2 · (S ·B −B) and special honest-verifier zero-knowledged (computational if
commitub,ch is used and perfect if commitcb,ph is used).

Proof of Theorem 3.1. The proof is given in Section 3.1.1.

3.1.1 Proof of THEOREM 3.1

Completeness with Abort

Since the prover P may choose to abort the protocol with some probabil-
ity (see Equation (3.1)), we say that the protocol satisfies a property called
completeness with abort, which is slightly different from the completeness
property defined in DEFINITION 2.21. Assume that both the prover P and
the verifier V are honest and follows the protocol. Furthermore, assume
that P know a correct witness ~w to the problem x such that (~w, x) ∈ R. The
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protocol satisfies completeness with abort if V always output accept when
Z 6= ⊥. Hence, we have to prove that a honest prover can always produce
an accepting conversation (com, b,Z) such that com = commitpk(a, s) and
f(~z) = a ◦ yb when Z 6= ⊥.

Assume that Z 6= ⊥. Since P is honest he can always correctly open
the commitment com, and hence the first check performed by V is true. For
b = 0 we have that:

f(~z) = a ◦ yb
f(~r + b · ~w) = a ◦ yb
f(~r + 0 · ~w) = a ◦ y0

f(~r) = a

which is true according to the definition of a. For b = 1 we have that:

f(~z) = a ◦ yb
f(~r + b · ~w) = a ◦ yb
f(~r + 1 · ~w) = a ◦ y1

f(~r + ~w) = f(~r) ◦ f(~w)

which is true because the function f is additive homomorphic.

The probability that P chooses to abort is:

Pr[~z /∈ In ] = 1− Pr[~z ∈ In ]

= 1−
(

2 · (S ·B −B) + 1

2 · (S ·B) + 1

)n
(3.1)

because for every i = 1, 2, . . . , n there is 2 · (S ·B −B) + 1 possibilities of ri
in ~r = (r1, . . . , rn) that may lead to ~z ∈ In where 2 · (S · B) + 1 is the size
of the interval that ~r is chosen from. A formal proof for Pr[~z ∈ In ] is given
below.

The only value that P chooses during the protocol is the randomness ~r, and
hence it depends on the values of ri in ~r whether P has to abort or not.
Because V sends a bit as challenge we have two cases: b = 0 and b = 1. For
b = 0 is ~z = ~r + b · ~w = ~r + 0 · ~w = ~r, i.e. we don’t have to consider the
value of ~w. We know that ‖~r‖∞ ≤ S ·B and ‖~z‖∞ ≤ S ·B−B when ~z ∈ In.
Therefore, if we want ~z ∈ In then for all i = 1, . . . , n must:

ri ∈ [−(S ·B −B);S ·B −B]

which is an interval of size 2 · (S · B − B) + 1. And hence, for b = 0 is
Pr[~z ∈ In ] =

(
2·(S·B−B)+1

2·(S·B)+1

)n
.

For b = 1 is ~z = ~r + ~w. Let ~w be any value such that ‖~w‖∞ ≤ B, e.g.
the one at point (a) in FIGURE 3.1. This implies that ~z lies between point
(b) and (c) in the figure, but if we want ~z ∈ In then ~z must not be in the
interval illustrated by I− and I+ in the figure. To ensure this, ~r must not
be from the interval illustrated by J− and J+ in the figure, which are the
same intervals as I− and I+, just shifted such that their range are inside the
possible values of ~r (remember that ‖~r‖∞ ≤ S ·B). Because of symmetry is
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FIGURE 3.1

the size of the union of J− and J+ equal |J−| + |J+| = 2 · B. This implies
that if we want ~z ∈ In then for all i = 1, . . . , n must ri be from an interval
of size 2 · (S · B) + 1 − 2 · B = 2 · (S · B − B) + 1. And hence, for b = 1 is
Pr[~z ∈ In ] =

(
2·(S·B−B)+1

2·(S·B)+1

)n
.

(Statistical/Perfect) Special Soundness

We will first argue why the protocol satisfies perfect special soundness as
defined in DEFINITION 2.21 when the used commitment scheme commit is
unconditional binding and computational hiding. And then why it satisfies
statistical special soundness as defined in DEFINITION 2.23 when commit is
computational binding and perfect hiding.

For perfect special soundness we have to prove that if a (possible malicious)
prover P∗ can produce two accepting conversations (com, b,Z = (~z, a, s))
and (com, b′,Z ′ = (~z ′, a′, s′)) for the same x where b 6= b′, then there ex-
ists a probabilistic polynomial time knowledge extractor Ext, which on in-
put (x, a, a′, b, b′, ~z, ~z ′) can extract a correct witness ~w ∗ from P∗ such that
(~w ∗, x) ∈ R. Notice that, since commit is unconditional binding we have
that a = a′, because after P∗ has produced the first accepting conversa-
tion with com = commitpk(a, s), he can’t even if he has infinite comput-
ing power find a different a′ 6= a for the second conversation such that
com = commitpk(a

′, s′). Therefore, two accepting conversations with b = 0
and b′ = 1 gives the following two equations:

f(~z0) = a ◦ yb
= a ◦ y0

= a

f(~z1) = a ◦ yb′

= a ◦ y1

= a ◦ y

Using f(~z0) = a in f(~z1) = a ◦ y and the fact that both G is a group with
composition ◦ (i.e. every elements in G has an inverse) and Zn is a group



Chapter 3. A General Framework for Protocols with Abort 26

with composition "+" (i.e. the inverse is "−") we have that:

f(~z1) = a ◦ y
f(~z1) = f(~z0) ◦ y

f(~z1) ◦ f(~z0)−1 = y

f(~z1 − ~z0) = y

Hence, the knowledge extractor Ext outputs the witness ~w ∗ = ~z1−~z0, which
satisfies that (~w ∗, x) ∈ R and has size ‖~w ∗‖∞ = ‖~z1 − ~z0‖∞ ≤ 2 · (S ·B−B)
because both ‖~z1‖∞ ≤ S ·B −B and ‖~z0‖∞ ≤ S ·B −B.

We will now argue what happens to the above proof if the used commit-
ment scheme is computational binding and perfect hiding. As defined in
Section 2.7 (the definitions of the two flavors of a commitment scheme) is
the probability that a polynomial time bounded P∗ finds a different a′ 6= a,
after he has produced the first accepting conversation such that commitpk(a, s) =
com = commitpk(a

′, s′), negligible in the security parameter. Remember that
the security parameter was given as input to the key generator algorithm
that generated the public key pk. Therefore, if P∗ succeed in finding a differ-
ent a′ 6= a it implies that the knowledge extractor Ext can’t output a correct
witness. Hence, the protocol satisfies statistical special soundness.

(Computational/Perfect) Special Honest-Verifier Zero-Knowledge

We will first argue why the protocol satisfies perfect special honest-verifier
zero-knowledge (sHVZK) as defined in DEFINITION 2.21 when the used
commitment scheme commit is computational binding and perfect hiding.
And then why it satisfies computational sHVZK as defined in DEFINITION

2.23 when commit is unconditional binding and computational hiding.

For perfect special honest-verifier zero-knowledge we have to construct a
probabilistic polynomial time simulator Sim, which on input x and random
challenge bit bs outputs a conversation with the same probability distribu-
tion as a conversation from the real protocol between a honest prover P
and verifer V, i.e. Sim(x, bs) ∼p (P(~w),V)(x) where (~w, x) ∈ R. But be-
fore we prove this statement and for a better intuition about why we have
to use a commitment scheme in the framework, we will first describe the
framework without the commitment scheme and why we can’t simulate
this version of the framework correct. After that we construct the correct
simulator for the framework with a commitment scheme and argue why
this simulation is perfect.

Why the commitment scheme is needed. The general framework with
abort would have been defined as follows if we didn’t had to use a com-
mitment scheme:

1. The prover P chooses ~r uniformly at random from Zn such that ‖~r‖∞ ≤
S ·B for S ≥ 1 and sends a = f(~r) to the verifier V.

2. V chooses a challenge bit b uniformly at random and sends b to P.
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3. P computes ~z = ~r + b · ~w and if ~z /∈ In for the interval I = [−(S · B −
B);S · B − B] he sets ~z = ⊥ (i.e. he aborts the protocol). Finally he
sends ~z to V, who only verifies the response if ~z 6= ⊥ by checking that
f(~z) = a ◦ yb, i.e. (a, b, ~z) is an accepting conversation for x.

Likewise, the simulator Sim on input bs and x would have been defined as
follows:

1. Chooses ~zs ∈R Zn uniformly at random with probability 1−Pr[~z /∈ In ]
(see Equation (3.1)) such that ‖~zs‖∞ ≤ S ·B−B (i.e. ~zs ∈ In), otherwise
sets ~zs = ⊥.

2. Computes as = f(~zs) ◦ y−bs if ~zs ∈ In, otherwise computes as = f(~rs)
for some ~rs ∈R Zn, which is chosen uniformly at random such that
‖~rs‖∞ ≤ S ·B.

3. Outputs the conversation (as, bs, ~zs) for x.

The reason why (as, bs, ~zs) may not have the same probability distri-
bution as a conversation (ap, bp, ~zp) from the real protocol is because Sim
doesn’t know the value of P’s witness ~w. Therefore, if Sim chooses to abort
in step (1) of the simulation we can’t be sure that ~rs + bs · ~w /∈ In, which is
the only reason why Sim should choose to abort the protocol and where ~rs
is the one chosen in step (2) of the simulation. This problem is solved by us-
ing a commitment scheme to hide the value of as and ap, which implies that
Sim doesn’t have to choose the randomness ~rs in the aborting case because
it doesn’t have to compute as.

The proof for perfect special honest-verifier zero-knowledge. Recall that
a conversation from the real protocol is on the form (comp, bp,Zp), and
hence the simulator Sim on input x and random challenge bit bs has to out-
put a conversation (coms, bs,Zs) with the same probability distribution. The
simulator Sim is constructed as follows:

1. Chooses to abort the protocol with probability Pr[~z /∈ In ] (see Equa-
tion (3.1)).

2. If abort:

(a) Chooses ~ds ∈R Zn uniformly at random such that
∥∥∥~ds∥∥∥

∞
≤ S ·B

and computes coms = commitpk(f(ds), ss) where ss ∈R Z is the
randomness used in the commitment scheme.

(b) Outputs the conversation (coms, bs,Zs = ⊥).

3. Else no abort:

(a) Chooses ~zs ∈R Zn uniformly at random such that ‖~zs‖∞ ≤ S ·B−
B, computes as = f(~zs) ◦ y−bs and coms = commitpk(as, ss) where
ss ∈R Z is the randomness used in the commitment scheme.

(b) Outputs the conversation (coms, bs,Zs = (~zs, as, ss)).
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As shown in the following equation is the protocol still complete when the
simulator chooses not to abort:

f(~zs) = as ◦ ybs
= (f(~zs) ◦ y−bs) ◦ ybs
= f(~zs) ◦ y−bs+bs
= f(~zs)

To prove that the output of the simulator is perfectly indistinguishable from
a conversation in the real protocol, i.e. Sim(x, bs) ∼p (P(~w),V)(x), we have
to prove that the statistical distance between a conversation (coms, bs,Zs)
from the simulator and a conversation (comp, bp,Zp) from the real proto-
col is equal 0. Before we apply DEFINITION 2.7 (the definition of statis-
tical distance) on the simulator and the real protocol we first notice that
the challenge bit bs is chosen uniformly at random and then given to the
simulator, and hence it has the same probability distribution as the chal-
lenge bit bp in the real protocol, i.e. bs ∼p bp. Second, since the commit-
ment scheme commit is perfect hiding we have that coms ∼p comp. There-
fore, in the first case when the simulator chooses to abort, which means
that Zs = ⊥ and Zp = ⊥, is (coms, bs,Zs) ∼p (comp, bp,Zp) and hence
Sim(x, bs) ∼p (P(~w),V)(x).

Now, for the second case when then simulator chooses not to abort it
has to send the response and open the commitment, and hence we have to
argue that ~zs ∼p ~zp, ss ∼p sp and as ∼p ap. Since ss and sp are both chosen
uniformly at random they have the same probability distribution. The sim-
ulator computes as as as = f(~zs) ◦ y−bs , which means that as is determined
by ~zs and bs. But as argued before has bs the same probability distribution
as bp, and hence all we need to prove is that the statistical distance between
~zs and ~zp is 0. Using DEFINITION 2.7 we let P correspond to the simulator
and Q to the real protocol. The statistical distance between P and Q is:

SD(P,Q) =
∑
ζ 6=⊥
|P (ζ)−Q(ζ)|

=
∑
ζ 6=⊥
|Pr[~zs = ζ ]− Pr[ ~zp = ζ ]| (3.2)

We then have to argue that Equation (3.2) is equal 0. For ~zp 6= ⊥ in the real
protocol we know that ‖~zp‖∞ ≤ S ·B−B, which is exactly the same interval
of size T = 2 · (S ·B −B) + 1 as the simulator chooses ~zs from, and hence:

Pr[~zs = ζ ] = Pr[ ~zp = ζ ] =
1

T
(3.3)
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Using Equation (3.3) in (3.2) we get the desired result:

SD(P,Q) =
∑
ζ 6=⊥
|Pr[~zs = ζ ]− Pr[ ~zp = ζ ]|

=
∑
ζ 6=⊥

∣∣∣∣ 1

T
− 1

T

∣∣∣∣
= 0

We will now argue why the protocol is computational sHVZK when the
commitment scheme is unconditional binding and computational hiding.
In this case is the only difference in the above proof that coms ∼c comp

instead of coms ∼p comp (as defined in Section 2.7), and hence Sim(x, bs) ∼c
(P(~w),V)(x).

3.2 Comparison of the Aborting and Non-Aborting Ver-
sion of the General Framework

In this section we first present a non-aborting version of the general frame-
work as presented in Section 3.1 and then we compares the two. The non-
aborting version is almost identical to the aborting version, but with the
main differences that the interval which the randomness ~r is chosen from is
much larger compared to the interval that ~w is chosen from, and we don’t
have to use a commitment scheme. The function f , witness ~w and problem
x = (f, y) are defined as in Section 3.1. The non-aborting version of the
general framework is defined as follows:

PROTOCOL 3.2: The non-aborting
version of the general framework

1. The prover P chooses ~r uniformly at random from Zn such that
‖~r‖∞ ≤ 2k · B for the parameter k ≥ 1 and sends a = f(~r) to
the verifier V.

2. V chooses a challenge bit b uniformly at random and sends b to
P.

3. P computes ~z = ~r + b · ~w and sends ~z to V. Finally V verifies
the response by checking that f(~z) = a ◦ yb, i.e. (a, b, ~z) is an
accepting conversation for x.

Illustration of the protocol
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PROTOCOL 3.2: The non-aborting version of the general frame-
work (continued)

Prover P (~w, x) Verifier V (x)

~r ∈R Zn

a = f(~r)

b ∈R {0, 1}

~z = ~r + b · ~w

accept iff f(~z) = a ◦ yb

The security of the protocol lies in the fact that adding a small vector b · ~w
to a large vector ~r doesn’t have much influence on the result. I.e. we can
think of the response ~z as ~z = ~r where ~r is just a vector chosen uniformly
at random. Therefore, we can think of k as the security parameter of the
protocol since it defines how large an interval ~r is chosen from compared to
~w. This is used in the proof of THEOREM 3.2 where we have to prove that
some statistical distance is negligible small.

THEOREM 3.2. The non-aborting version of the general framework presented
in this section satisfies perfect completeness, perfect special soundness where
the extracted witness has size ‖~w ∗‖∞ ≤ 2 · (2k ·B+B) and statistical special
honest-verifier zero-knowledge.

Proof of Theorem 3.2. The proof for perfect completeness and perfect special
soundness as defined in DEFINITION 2.21 are almost identical to the ones
given in the proof of THEOREM 3.1. The only differences are that we don’t
have to consider the case when the prover P chooses to abort (and hence
the use of the commitment scheme, which weakened the special soundness
property in the aborting version) and the extracted witness ~w ∗ from the
perfect special soundness proof has size ‖~w ∗‖∞ ≤ 2 · (2k · B + B) because
‖~z‖∞ ≤ 2k ·B +B.

Statistical special honest-verifier zero-knowledge (sHVZK) is almost simi-
lar to perfect sHVZK as defined in DEFINITION 2.21 except that we have to
prove that the output from the simulator Sim is statistically indistinguish-
able from a conversation in the real protocol. The simulator Sim on input x
and random challenge bs is constructed as follows:

1. Chooses ~zs uniformly at random in Zn such that ‖~zs‖∞ ≤ 2k ·B +B.

2. Computes as = f(~zs) ◦ y−bs .

3. Outputs the conversation (as, bs, ~zs) for x.
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FIGURE 3.2

To prove that Sim(x, bs) ∼s (P(~w),V)(x) we have to argue that the statistical
distance between a conversation (as, bs, ~zs) from the simulator and a con-
versation (ap, bp, ~zp) from the real protocol is negligible in k. We use k since
it’s the security parameter of the protocol as argued previously. Before we
use DEFINITION 2.7 (the definition of the statistical distance) we notice that
both challenge bits bs and bp are distributed equally because both are chosen
uniformly at random. Also, the simulator computes as as as = f(~zs) ◦ y−bs ,
which means that as is determined by ~zs and bs. Therefore, all we need to
prove is that the statistical distance between ~zs and ~zp is negligible in k. Us-
ing DEFINITION 2.7 we let P correspond to the simulator and Q to the real
protocol. The statistical distance between P and Q is:

SD(P,Q) =
∑
ζ

|P (ζ)−Q(ζ)|

=
∑
ζ

|Pr[~zs = ζ ]− Pr[ ~zp = ζ ]| (3.4)

Let ~w be any vector such that ‖~w‖∞ ≤ B, e.g. the one at point (a) in FIGURE

3.2. This implies that ~zp lies between point (b) and (c) in the figure. How-
ever, this is not the same interval as the simulator chooses ~zs from, which is
between point (d) and (e) in the figure and of size T = 2 · (2k · B + B) + 1.
Therefore, in the interval between point (d) and (b), also illustrated by I− in
the figure, is the statistical distance

∑
ζ∈I−

∣∣ 1
T − 0

∣∣. Similar for the interval
I+ in the figure is the statistical distance

∑
ζ∈I+

∣∣ 1
T − 0

∣∣. Because of symme-
try is the size of the union of I− and I+ equal |I−|+ |I+| = 2 · B. Putting it
all together, we get the following result:

SD(P,Q) =
∑
ζ

|Pr[~zs = ζ ]− Pr[ ~zp = ζ ]|

=
∑
ζ∈I−

∣∣∣∣ 1

T
− 0

∣∣∣∣+
∑

ζ /∈I−∪I+

|0− 0|+
∑
ζ∈I+

∣∣∣∣ 1

T
− 0

∣∣∣∣
= |I−| ·

1

T
+ 0 + · · ·+ 0 + |I+| ·

1

T

= (|I−|+ |I+|) ·
1

T

= (2 ·B) · 1

T
(3.5)

where Equation (3.5) is negligible in k because T = 2 · (2k · B + B) + 1 is
exponential large in k.
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TABLE 3.2: Comparison of the aborting and non-aborting
version of the general framework. See PROTOCOL 3.1 for
an illustration of the aborting version and PROTOCOL 3.2

for the non-aborting version.

The aborting version The non-aborting version

Parameters ‖~w‖∞ ≤ B ‖~w‖∞ ≤ B
‖~r‖∞ ≤ S ·B ‖~r‖∞ ≤ 2k ·B

‖~z‖∞ ≤ S ·B −B
or ~z = ⊥

‖~z‖∞ ≤ 2k ·B +B

Completeness
Aborts with prob.

Pr[~z /∈ In ] (Eq. (3.1))
Perfect

Special soundness
Statistical/Perfect and

‖~w ∗‖∞ ≤ 2 · (S ·B −B)

Perfect and

‖~w ∗‖∞ ≤ 2 · (2k ·B +B)

sHVZK Perfect/Computational Statistical

We can now finally compare the two versions of the general framework
as we have done in TABLE 3.2. The differences between the two are that
the non-aborting version chooses the randomness ~r from a much larger
interval and has no aborting option, which implies that it’s perfectly com-
plete. However, this come at the expense of the size of the extracted witness
~w ∗, which is much larger compared to the extracted witness in the abort-
ing version, because the response ~z in the non-aborting version is from a
much larger interval. The non-aborting version also satisfies perfect special
soundness and statistical sHVZK while the aborting version either satis-
fies perfect special soundness and computational sHVZK when the used
commitment scheme is unconditional binding and computational hiding,
or statistical special soundness and perfect sHVZK when the commitment
scheme is computational binding and perfect hiding.

The above observation about the size of the extracted witness in the two
versions is important if we base the security of the protocol on a lattice prob-
lem like the shortest vector problem: Since the knowledge extractor Ext in
the non-aborting version is able of computing a large witness ~w ∗ such that
(~w ∗, x) ∈ R after having seen two accepting conversations with different
challenges from the prover P, it tells us that there exists a large preimage of
y. Remember that the preimage of y is P’s witness. And since the short-
est vector problem is reduced to finding a small preimage (and not a large
one) as argued in Section 2.3, a malicious verifier V∗ has a high probabil-
ity of finding this large preimage of y, and hence break the security of the
protocol. However, in the aborting version is this not a problem since Ext
computes a small witness. And hence, in this version has V∗ a hard time
finding a preimage of y.
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Chapter 4

Applications of the General
Framework

4.1 Protocols based on the General Framework

In this section we present two applications of the general framework as pre-
sented in Chapter 3: Girault’s protocol [1, 3] and Lyubashevsky’s lattice-
based protocol [7]. Both protocols were original presented as identifica-
tion schemes, which means that they don’t have to satisfy the special hon-
est verifier zero-knowledge (sHVZK) property, and hence they don’t have
to use a commitment scheme. A protocol is an identification scheme if it
satisfies completeness, special soundness and witness hiding. The witness
hiding property says that a possible malicious verifier V∗ should not learn
anything about the provers witness after executing the protocol (while the
sHVZK property says that a honest verifier should not learn any informa-
tion whatsoever except that the provers claim is true). Hence, the special
soundness and witness hiding properties implies that V∗, who first play
the role of the verifier with the prover P, can’t impersonate P later on with
another verifier.

In Girault’s protocol is the function f : Z→ (Z∗n, ·) defined as f(c) = gc mod
n for some c ∈ Z where g ∈ Z∗n such that its order ord(g) is maximal in Z∗n
and n = p · q for the primes p and q. The witness w is an integer from the
domain Z and the problem x is defined as x = (f, y) where y = f(w). In
this protocol is the two primes p and q both unknown for the prover and
the verifier, and hence we have to use the general framework because the
prover is not able of choosing the randomness from the order of the group
Z∗n = {x ∈ Zn | gcd(x, φ(n)) = 1}where φ(n) = (p− 1) · (q − 1).

We can either use the aborting or non-aborting version of the general
framework for Girault’s protocol. To prove that it’s an application of the
general framework we only need to define a commitment scheme commit
and prove that f is an additive homomorphic function: Let commit be any
unconditional binding and computational hiding or computational binding
and perfect hiding commitment scheme with public key pk. Furthermore,
let c, d ∈ Z. We have that:

f(c+ d) = gc+d mod n

= (gc · gd) mod n

= (gc mod n) · (gd mod n)

= f(c) · f(d)
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which is the definition of an additive homomorphic function.

In Lyubashevsky’s lattice-based protocol are ideal lattices represented as
ideals in the ring L = Zp[x]/ 〈xn + 1〉 where p is some odd positive integer
and n is any power of 2. Therefore, when we talk about multiplying two
vectors we actually first convert them into polynomials in L and then mul-
tiply them together. The function f : Dm → (L,+, ·) in Lyubashevsky’s
protocol is chosen uniformly at random from the family of hash functions
H(L,D,m) (see Section 2.3), i.e. f(d̂) = ĉ · d̂ = ~c1 · ~d1 + · · · + ~cm · ~dm where
ĉ ∈ Lm and d̂ ∈ Dm. We can think of the function f as a mapping from
the set Dm of lattices of length m to the set L of vectors of length n where
D ⊆ L. The witness ŵ is a lattice from the domain Dm and the problem x
is defined as x = (f, y) where y = f(ŵ). Since the security of the protocol
is based on the shortest vector problem we have to use the aborting version
of the general framework as argued in Section 3.2.

Again, to prove that Lyubashevsky’s protocol is an application of the
general framework with abort we only need to define a commitment scheme
commit and prove that f is an additive homomorphic function: Let commit
be any unconditional binding and computational hiding or computational
binding and perfect hiding commitment scheme with public key pk. Fur-
thermore, let d̂, ê ∈ Dm. We have that:

f(d̂+ ê) = ĉ · (d̂+ ê)

= (ĉ · d̂) + (ĉ · ê)
= f(d̂) + f(ê)

which is the definition of an additive homomorphic function.

4.2 A Statistically Secure Sigma Protocol in the Stan-
dard Model based on the General Framework with
Abort

The main reason why the general framework with abort presented in Sec-
tion 3.1 is not a statistically secure sigma protocol, is because we have not
defined what should happen when the prover P chooses to abort, the chal-
lenge is only a single bit and a honest P who know a correct witness can
be rejected by the verifier V with too high probability. The last argument
comes from the fact that we want S to be as small as possible, but this im-
plies that the probability that P chooses to abort with (see Equation (3.1))
gets higher since it depends on S. Therefore, to construct a statistically
secure sigma protocol, as illustrated in PROTOCOL 4.1, we execute the gen-
eral framework with abort t times in parallel where we use a linear secret
sharing code C = [t, k, d]2 with minimum distance d > 2 · (t−E) (see Equa-
tion (4.1) for the definition of E) to compute a t-bit codeword, which P has
to answer. The verifier V then outputs accept if and only if at least E of
the t conversations are accepted. The reason why we use the code C is for
the protocol to satisfy statistical special soundness as we will argue in the
proof of THEOREM 4.2. As described in Section 2.4 exists there a linear se-
cret sharing code C = [t, k, d]2 with (d⊥ − 2)-privacy (when using ` = 1)
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and (t − d + 1)-reconstruction where d⊥ is the minimum distance of the
dual code C⊥ = [t, t− k, d⊥]2.

In the protocol is the function f , witness ~w, problem x = (f, y) where
y = f(~w) and commitment scheme commit with public key pk defined as
in the general framework with abort in Section 3.1. The statistically secure
sigma protocol in the standard model is defined as follows:

PROTOCOL 4.1: A statistically secure sigma protocol

1. P chooses ~r1, . . . , ~rt uniformly at random from Zn such that
‖~ri‖∞ ≤ S · B for S ≥ 1. He then computes ai = f(~ri)
and comi = commitpk(ai, si) for i = 1, . . . , t where si ∈R Z
is the randomness used in the commitment scheme and sends
(com1, . . . , comt) to V.

2. V chooses a k-bit string e uniformly at random and sends e to
P.

3. P first use the secret sharing code C = [t, k, d]2 with minimum
distance d > 2 · (t − E) to compute the t-bit codeword c =
C(e). He then computes ~zi = ~ri + c · ~w for i = 1, . . . , t. If
~zi ∈ In for the interval I = [−(S · B − B);S · B − B] he sets
Zi = (~zi, ai, si), otherwise he sets Zi = ⊥. Finally P sends
(Z1, . . . ,Zt) to V who first use C to compute c = C(e) and then
outputs accept if and only if at leastE of the t conversations are
accepted, i.e. at least E of the t conversations satisfies Zi 6= ⊥,
comi = commitpk(ai, si) and f(~zi) = ai ◦ yc.

Illustration of the protocol
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PROTOCOL 4.1: A statistically secure sigma protocol (continued)

Prover P (~w, x) Verifier V (x)

~ri ∈R Zn

ai = f(~ri)

si ∈R Z
comi = commitpk(ai, si)

(com1, . . . , comt)

e ∈R {0, 1}k

c = C(e)

~zi = ~ri + c · ~w
if ~zi ∈ In then
Zi = (~zi, ai, si)

else Zi = ⊥
(Z1, . . . ,Zt)

c = C(e)

accept iff at least E :

Zi 6= ⊥,
comi = commitpk(ai, si)

and f(~zi) = ai ◦ yc

The limit E is defined such that a malicious prover P∗ who doesn’t know
a correct witness to the problem x has a hard time convincing V to output
accept, while a honest prover P has not. We have that a honest prover
will approximately send t · Pr[~z /∈ In ] abort messages to the verifier (see
Equation (3.1) for the definition of Pr[~z /∈ In ]), and hence we set E equal
the number of expected accepted conversations minus some allowed error
probability ε ∈ (0; 1]:

E = t · (1− Pr[~z /∈ In ])− t · ε (4.1)

Using the Chernoff-Hoeffding bound as described in Section 2.2 can we
prove that the actually number of accepted conversations are at most E
with probability negligible in t (i.e. the actually number of accepted con-
versations are at least E with high probability). A conversation consists
of the three messages (comi, c,Zi) (actually, then a conversation consists
of the three messages (comi, e,Zi), but since the prover has to answer the
codeword c instead of ewe use c as the second message) where comi andZi
for i = 1, . . . , t are fully independent because of the used randomness while
c is only (d⊥ − 2)-wise independent (because we use a code with (d⊥ − 2)-
privacy to generate c). Therefore, we can’t use the Chernoff-Hoeffding
bound because it requires that all three messages are fully independent,
but fortunately can we use the Chernoff-Hoeffding bound with limited in-
dependence as described in Section 2.2.1.
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1 tE µ(t)

µ(t) � ✏ · µ(t)

FIGURE 4.1

Let Xi for i = 1, . . . , t denote the conversations where Xi = 1 if con-
versation i is an accepting conversation and Xi = 0 otherwise. Now, X =∑t

i=1Xi denotes the actually number of accepted conversations and

µ(t) =
t∑
i=1

E[Xi = 1]

=
t∑
i=1

(1− Pr[~z /∈ In ])

= t · (1− Pr[~z /∈ In ]) (4.2)

denotes the expected number of accepted conversations. Using the Chernoff-
Hoeffding bound with limited independence we want to prove that X lies
between 1 and E in FIGURE 4.1 with probability negligible in t.

Let d⊥ = t · α for some α ∈ [0; 1] and define the independence as
`(t) = (t · α) − 2. Now, using the same ε ∈ (0; 1] as in Equation (4.1) the
Chernoff-Hoeffding bound with limited independence says that if `(t) ≤⌊
ε2 · µ(t) · exp

(
−1

3

)⌋
then

Pr[|X − µ(t)| ≥ ε · µ(t)] ≤ exp

(
−
⌊
`(t)

2

⌋)
and if `(t) =

⌊
ε2 · µ(t) · exp

(
−1

3

)⌋
then

Pr[|X − µ(t)| ≥ ε · µ(t)] ≤ exp

(
−
⌊
ε2 · µ(t)

3

⌋)
where exp(x) = ex. In other words, the probability that the actual number
of accepted conversations X deviates with more than ε · µ(t) from the ex-
pected number of accepted conversation µ(t) is negligible in t. And hence,
the probability that X lies between 1 and µ(t) − ε · µ(t) in FIGURE 4.1 is
negligible in t. Therefore, if we can argue that the distance between E and
µ(t) is larger than or equal to the distance between µ(t) − ε · µ(t) and µ(t),
we have proved that X lies between 1 and E with probability negligible in
t. And because the verifier only outputs accept if he has received at least
E accepting conversations, the verifier outputs reject with probability neg-
ligible in t for a honest prover. To prove that |E − µ(t)| ≥ ε ·µ(t) we use the
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{

FIGURE 4.2

fact that t ≥ µ(t), Equation (4.1) and (4.2):

|E − µ(t)|= |(t · (1− Pr[~z /∈ In ])− t · ε)− µ(t)|
= |(µ(t)− t · ε)− µ(t)|
= |−t · ε|
= t · ε
≥ µ(t) · ε

EXAMPLE 4.1. Assume that t = 100, Pr[~z /∈ In ] = 0.1 and ε = 0.05. If the
verifier V executes PROTOCOL 4.1 with a honest prover P, he would expect
to receive t · Pr[~z /∈ In ] = 10 abort messages, and hence after executing the
protocol V outputs accept if and only if at least

E = t · (1− Pr[~z /∈ In ])− t · ε = 85

of the conversations are accepted. Using µ(t) = t · (1 − Pr[~z /∈ In ]) = 90
in the Chernoff-Hoeffding bound with limited independence we get the
following probability, which is negligible in t:

Pr[|X − µ(t)| ≥ ε · µ(t)] = Pr[|X − 90| ≥ 4.5]

In other words, the probability that X deviates with more than 4.5 from
µ(t) = 90 is negligible in t, which implies that X lies between 1 and point
(a) in FIGURE 4.2 with probability negligible in t. And hence, X lies be-
tween 1 and E = 85 with probability negligible in t.

♦

THEOREM 4.2. Let commitub,ch be an unconditional binding and computa-
tional hiding commitment scheme and commitcb,ph a computational binding
and perfect hiding commitment scheme.

The protocol presented in this section satisfies statistical completeness, spe-
cial soundness (perfect if commitub,ch is used and statistical if commitcb,ph is
used) and special honest-verifier zero-knowledge (computational if commitub,ch

is used and perfect if commitcb,ph is used) in the standard model, and hence is
a statistically secure sigma protocol.

Proof of Theorem 4.2. Let (P,V) be the general framework with abort pre-
sented in Section 3.1 for the relation (~w, x) ∈ R. The prover P and the
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verifier V are both given x as common input and P is given ~w as private in-
put. Furthermore, let (PΣ,VΣ) be the protocol presented in this section for
the same relationRwhere PΣ is the prover and VΣ is the verifier. If (PΣ,VΣ)
is a statistically secure sigma protocol it has to satisfy statistical complete-
ness, statistical special soundness and computational special honest-verifier
zero-knowledge as defined in DEFINITION 2.23.

Using the above argument about howE is defined and that the actual num-
ber of accepting conversations lies between 1 and E with probability neg-
ligible in t, we have that (PΣ,VΣ) satisfies statistical completeness. Fur-
thermore, since (P,V) satisfies computational special honest-verifier zero-
knowledge (sHVZK) we have that (PΣ,VΣ) also satisfies this property be-
cause sHVZK is invariant under parallel composition.

To prove that (PΣ,VΣ) satisfies statistical special soundness we argue that
if a possible malicious prover P∗Σ can produce two accepting conversations
(com, c,Z) and (com′, c′,Z ′) with different challenges c 6= c′, there exists an
index j such that cj 6= c′j for the conversations (comj , cj ,Zj) and (com′j , c

′
j ,Z ′j).

And since this is two conversations on the same form as in (P,V), which
satisfies statistical special soundness, we have that (PΣ,VΣ) also satisfies
statistical special soundness.

Assume that P∗Σ can produce two accepting conversations (com, c,Z)
and (com′, c′,Z ′) with different challenges c 6= c′. Remember that it’s just
the general framework with abort executed t times in parallel with at least
E accepting conversations where P∗Σ has correctly answered c = C(e) and
c′ = C(e′). Hence, c and c′ are both t-bit strings and Z and Z ′ both contains
the t answers.

We know that at most t − E of both Z and Z ′ are aborting answers.
Assume that these aborting answers are Zi = ⊥ for all i between point (a)
and (b) in FIGURE 4.3 and Z ′i = ⊥ for all i between point (c) and (d) in
the figure. Therefore, if the Hamming distance between two codewords
is ∆(c, c′) > (t − E) + (t − E) = 2 · (t − E) (as illustrated with the grey
line in the figure), there exists in worst case at least one index j where P∗Σ
has produced two accepting conversations (comj , cj ,Zj) and (com′j , c

′
j ,Z ′j)
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with different challenges cj 6= c′j . And since the used code C = [t, k, d]2 has
minimum distance d > 2 · (t− E) we have that ∆(c, c′) > 2 · (t− E) for all
possible challenges c, c′ ∈ C. To make sure that ∆(c, c′) > 2 · (t−E) we just
chooses E such that d > 2 · (t− E).

4.3 A Statistically Secure Non-Interactive Sigma Pro-
tocol in the Random Oracle Model based on the
General Framework with Abort

To construct a statistically secure non-interactive sigma protocol in the ran-
dom oracle model we use the Fiat-Shamir transformation as described in
Section 2.11 on the statistically secure sigma protocol presented in the pre-
vious section. However, as illustrated in the following exists there two ver-
sions depending on whether we want an efficient protocol that satisfies sta-
tistical completeness as defined in DEFINITION 2.23, or a less efficient one
that satisfies perfect completeness as defined in DEFINITION 2.21. In both
versions are the function f , witness ~w, problem x = (f, y) where y = f(~w),
code C = [t, k, d]2 with minimum distance d > 2 · (t − E) and commit-
ment scheme commit with public key pk defined as in the statistically se-
cure sigma protocol in Section 4.2. The version that satisfies statistical com-
pleteness is presented in PROTOCOL 4.2 and the one that satisfies perfect
completeness is presented in PROTOCOL 4.3.

PROTOCOL 4.2: A statistically secure non-interactive sigma
protocol in the ROM satisfying statistical completeness

1. The prover P chooses ~r1, . . . , ~rt uniformly at random from Zn
such that ‖~ri‖∞ ≤ S · B for S ≥ 1. He then computes ai =
f(~ri) for i = 1, . . . , t and sends comi = commitpk(ai, si) to the
random oracle O, which return a k-bit challenge e. si ∈R Z is
the randomness used in the commitment scheme. P then use
the secret sharing code C = [t, k, d]2 with minimum distance
d > 2 · (t−E) to compute the t-bit codeword c = C(e). He then
computes ~zi = ~ri+c · ~w for i = 1, . . . , t. If ~zi ∈ In for the interval
I = [−(S ·B −B);S ·B −B] he sets Zi = (~zi, ai, si), otherwise
he sets Zi = ⊥. Finally P sends ((com1, . . . , comt), (Z1, . . . ,Zt))
to the verifier V.

2. After receiving ((com1, . . . , comt), (Z1, . . . ,Zt)) V first sends
(com1, . . . , comt) to O, which return the k-bit challenge e, and
then use the secret sharing code C to compute c = C(e). Fi-
nally V outputs accept if and only if at leastE of the t conversa-
tions are accepted, i.e. at least E of the t conversations satisfies
Zi 6= ⊥, comi = commitpk(ai, si) and f(~zi) = ai ◦ yc.

Illustration of the protocol
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PROTOCOL 4.2: A statistically secure non-interactive sigma proto-
col in the ROM satisfying statistical completeness (continued)

Prover P (~w, x) Verifier V (x)

~ri ∈R Zn

ai = f(~ri)

si ∈R Z
comi = commitpk(ai, si)

e = O(com1, . . . , comt)

c = C(e)

~zi = ~ri + c · ~w
if ~zi ∈ In then
Zi = (~zi, ai, si)

else Zi = ⊥
(com1, . . . , comt),

(Z1, . . . ,Zt)

e = O(com1, . . . , comt)

c = C(e)

accept iff at least E :

Zi 6= ⊥,
comi = commitpk(ai, si)

and f(~zi) = ai ◦ yc

PROTOCOL 4.3: A statistically secure non-interactive sigma
protocol in the ROM satisfying perfect completeness

1. This step is similar to step (1) in PROTOCOL 4.2 except that if
~zi /∈ In then P repeats step (1) with some new randomness
~ri
′ 6= ~ri until ~zi ∈ In.

2. This step is similar to step (2) in PROTOCOL 4.2 except that
V only outputs accept if an only if all t conversations are ac-
cepted, i.e. all t conversations satisfies comi = commitpk(ai, si)
and f(~zi) = ai ◦ yc.

Illustration of the protocol
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PROTOCOL 4.3: A statistically secure non-interactive sigma proto-
col in the ROM satisfying perfect completeness (continued)

Prover P (~w, x) Verifier V (x)

~ri ∈R Zn

ai = f(~ri)

si ∈R Z
comi = commitpk(ai, si)

e = O(com1, . . . , comt)

c = C(e)

~zi = ~ri + c · ~w
if ~zi ∈ In then
Zi = (~zi, ai, si)

else try again

(com1, . . . , comt),

(Z1, . . . ,Zt)

e = O(com1, . . . , comt)

c = C(e)

accept iff all t :

comi = commitpk(ai, si)

and f(~zi) = ai ◦ yc
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Chapter 5

Conclusion

In this work we have presented a general framework for protocols with
abort that satisfies completeness with abort, statistical special soundness
and computational honest verifier zero-knowledge. We compared the abort-
ing version of the framework with a non-aborting version, and it showed
how important the abort technique is when we base the security on lattice
problems like the shortest vector problem: In the non-aborting version can a
malicious verifier compute a correct witness with high probability because
he only has to find a large preimage. However, in the aborting version has
the malicious verifier a hard time since he has to find a small preimage. Us-
ing the framework as a building block we have constructed a statistically se-
cure sigma protocol that satisfies statistical completeness, statistical special
soundness and computational honest verifier zero-knowledge. This new
kind of sigma protocol is useful in addition to that we can base the security
on lattice problems, when we want the response that the prover sends to
the verifier in the third steps to be small, e.g. in a signature scheme.

As stated previously satisfies the statistically secure sigma protocol either
statistical special soundness and perfect honest verifier zero-knowledge or
perfect special soundness and computational honest verifier zero-knowledge.
Therefore, it could be interesting to investigate whether both properties
could be perfect at the same time, i.e. have both perfect special sound-
ness and perfect honest verifier zero-knowledge, which is the same two re-
quirements that a sigma protocol has to satisfy. However, this requires that
another technique than a commitment scheme is used since it weaken one
of the two properties depending on the flavor of the commitment scheme.
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